24483 measured reflections

 $R_{\rm int} = 0.032$

5103 independent reflections 2818 reflections with $F^2 > 2\sigma(F^2)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Benzyltributylammonium 6-hydroxynaphthalene-2-sulfonate

Kazuya Uta, Yohei Sato and Jin Mizuguchi*

Department of Applied Physics, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, 240-8501 Yokohama, Japan Correspondence e-mail: mizu-j@ynu.ac.jp

Received 31 December 2008; accepted 12 January 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.055; wR factor = 0.191; data-to-parameter ratio = 15.6.

The title compound, $C_{19}H_{34}N^+ \cdot C_{10}H_7O_4S^-$, is a charge-control agent for toners used in electrophotography. Intermoleclar $O-H \cdot \cdot \cdot O$ hydrogen bonding between the OH group of one anion and the sulfonate O atom of a neighboring anion leads to the formation of one-dimensional chains along the *b* axis. In addition, $C-H \cdot \cdot \cdot O$ hydrogen bonds are observed. One of the *n*-butyl chains of the cation is disordered over two sites in a 0.88:0.12 ratio.

Related literature

For general background to charge-control agents for toners, see: Nash *et al.* (2001). For a related structure, see: Mizuguchi *et al.* (2007).

Experimental

Crystal data

 $\begin{array}{l} C_{19}H_{34}N^+ \cdot C_{10}H_7O_4S^-\\ M_r = 499.70\\ Monoclinic, P2_1/c\\ a = 16.9616 \ (4) \ \text{\AA}\\ b = 10.4422 \ (2) \ \text{\AA}\\ c = 17.6700 \ (4) \ \text{\AA}\\ \beta = 116.2570 \ (11)^\circ \end{array}$

$$\begin{split} V &= 2806.73 \; (11) \; \text{\AA}^3 \\ Z &= 4 \\ \text{Cu} \; K\alpha \; \text{radiation} \\ \mu &= 1.28 \; \text{mm}^{-1} \\ T &= 296.1 \; \text{K} \\ 0.50 \; \times \; 0.25 \; \times \; 0.04 \; \text{mm} \end{split}$$

Data collection

Rigaku R-AXIS RAPID

diffractometer Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{min} = 0.720, T_{max} = 0.954$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.055$	328 parameters
$wR(F^2) = 0.191$	H-atom parameters constrained
S = 1.10	$\Delta \rho_{\rm max} = 0.27 \text{ e } \text{\AA}^{-3}$
5103 reflections	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond	geometry	(A, °)
---------------	----------	-------	---

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$D4-H4O\cdots O2^{i}$ $C12-H12B\cdots O2^{ii}$ $C16-H16B\cdots O3^{i}$	0.82	1.88	2.696 (3)	177
	0.96	2.52	3.470 (4)	173
	0.98	2.34	3.251 (4)	155

Symmetry codes: (i) x, y + 1, z; (ii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2006); program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2003); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996); software used to prepare material for publication: *CrystalStructure*.

The authors express their sincere thanks to Mr O. Yamate at Orient Chemical Industries, Ltd. for the preparation of the sample.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2755).

References

- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Mizuguchi, J., Sato, Y., Uta, K. & Sato, K. (2007). Acta Cryst. E63, o2509o2510.
- Nash, R. J., Grande, M. L. & Muller, R. N. (2001). Proceedings of the 7th International Conference on Advances in Non-Impact Printing Technology, pp. 358–364.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2009). E65, o319 [doi:10.1107/S1600536809001329]

Benzyltributylammonium 6-hydroxynaphthalene-2-sulfonate

K. Uta, Y. Sato and J. Mizuguchi

Comment

Quaternary ammonium salts (for example, benzyltributylammonium 4-hydroxynaphthalene-1-sulfonate: P-51 from Orient Chemical Industries) are well known charge-control agents (CCAs) for toners used in electrophotography. CCAs are usually added to toners to create a desired charge level and polarity (Nash *et al.*, 2001). The above compounds are characterized by high melting point above 433 K. The present high thermal stability is required for the toner manufacturing process which includes kneading of various toner components such as polymer, colorant, wax and CCA at 403–453 K. However, ordinary quaternary ammonium salts used in electrochemistry as supporting electrolytes exhibit much lower melting points below 373 K. Previously, we have investigated why P-51 alone possesses such a high melting point from the standpoint of the crystal structure. Then, we found chains of O—H…O intermolecular hydrogen bonds between the OH group of one anion and the sulfonate O atom of the neighboring one (Mizuguchi *et al.*, 2007). The formation of the hydrogen bond is found to be responsible for the high thermal stability of P-51. A s an extension of this study, the present paper deals with the structure of the title compound, which is one of the P-51 derivatives.

Fig. 1 shows the *ORTEPIII* plot (Burnett & Johnson, 19966) of the title molecule. The ions have no crystallographically imposed symmetry. Fig. 2 shows a hydrogen-bonded anionic chain along the *b* axis between the OH group of one anion and the sulfonate O atom of the neighboring one. In addition, C—H…O hydrogen bonds are observed in the crystal structure (Table 1). The hydrogen-bonding network is found to greatly contribute to the high melting point of the title compound (433 K), just as in the case of P-51 (462 K).

Experimental

The title compound was obtained from Orient Chemical Industries Ltd., and was recrystallized from a methanol solution. After 48 h, a number of colourless crystals were obtained in the form of platelets.

Refinement

Atom C11 was found to be disordered over two sites. The site occupancies for C11A/C11B were initially refined and later fixed at 0.88/0.12. These atoms were anisotropically refined. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å (aromatic), 0.96 Å (methyl), or 0.97 Å (methylene), and O—H = 0.82 Å; $U_{iso}(H) = 1.2-1.5U_{eq}$ (parent atom).

Figures

Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Only the major disorder component is shown.

Fig. 2. The formation of a hydrogen-bonded (dashed lines) chain. Only anions are shown for clarity.

Benzyltributylammonium 6-hydroxynaphthalene-2-sulfonate

Crystal data

$C_{19}H_{34}N^+ \cdot C_{10}H_7O_4S^-$	$F_{000} = 1080.00$
$M_r = 499.70$	$D_{\rm x} = 1.183 {\rm ~Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Cu K α radiation $\lambda = 1.54187$ Å
Hall symbol: -P 2ybc	Cell parameters from 15945 reflections
a = 16.9616 (4) Å	$\theta = 3.0-68.2^{\circ}$
b = 10.4422 (2) Å	$\mu = 1.28 \text{ mm}^{-1}$
c = 17.6700 (4) Å	T = 296.1 K
$\beta = 116.2570 \ (11)^{\circ}$	Plate, colourless
$V = 2806.73 (11) \text{ Å}^3$	$0.50\times0.25\times0.04~mm$
Z = 4	

Data collection

Rigaku R-AXIS RAPID diffractometer	2818 reflections with $F^2 > 2\sigma(F^2)$
Detector resolution: 10.00 pixels mm ⁻¹	$R_{\rm int} = 0.032$
ω scans	$\theta_{\text{max}} = 68.2^{\circ}$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$h = -20 \rightarrow 20$
$T_{\min} = 0.720, \ T_{\max} = 0.954$	$k = -12 \rightarrow 12$
24483 measured reflections	$l = -21 \rightarrow 21$
5103 independent reflections	

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.055$	$w = 1/[\sigma^2(F_o^2) + (0.07P)^2 + 1.689P]$ where $P = (F_o^2 + 2F_c^2)/3$

$wR(F^2) = 0.191$	$(\Delta/\sigma)_{max} = 0.001$
<i>S</i> = 1.10	$\Delta \rho_{max} = 0.27 \text{ e } \text{\AA}^{-3}$
5103 reflections	$\Delta \rho_{min} = -0.40 \text{ e } \text{\AA}^{-3}$
328 parameters	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Z	$U_{\rm iso}^*/U_{\rm eq}$	Occ. (<1)
S1	0.72863 (6)	-0.06500 (8)	0.72643 (5)	0.0673 (2)	
01	0.64931 (16)	-0.0460 (2)	0.73670 (15)	0.0775 (6)	
O2	0.79375 (17)	-0.1418 (2)	0.79490 (15)	0.0840 (7)	
O3	0.71380 (17)	-0.1121 (2)	0.64457 (14)	0.0805 (7)	
O4	0.89003 (16)	0.6746 (2)	0.76763 (17)	0.0837 (7)	
N1	0.71413 (18)	0.5740 (2)	0.48646 (16)	0.0636 (6)	
C1	0.5395 (2)	0.3823 (4)	0.4426 (2)	0.0829 (10)	
C2	0.4932 (2)	0.2707 (5)	0.4115 (2)	0.0948 (12)	
C3	0.5324 (3)	0.1552 (5)	0.4400 (3)	0.1058 (14)	
C4	0.6187 (3)	0.1490 (4)	0.4993 (3)	0.1091 (15)	
C5	0.6659 (2)	0.2610 (4)	0.5289 (2)	0.0922 (12)	
C6	0.6279 (2)	0.3792 (3)	0.5014 (2)	0.0729 (9)	
C7	0.6794 (2)	0.4989 (3)	0.5397 (2)	0.0729 (9)	
C8	0.6398 (2)	0.6301 (3)	0.4083 (2)	0.0691 (8)	
С9	0.5816(2)	0.7256 (3)	0.4246 (2)	0.0849 (10)	
C10	0.5138 (3)	0.7839 (4)	0.3429 (3)	0.1152 (14)	
C11A	0.5529 (5)	0.8743 (7)	0.3027 (4)	0.145 (3)	0.88
C11B	0.499 (2)	0.774 (4)	0.2541 (10)	0.120 (8)	0.12
C12	0.7657 (2)	0.4880 (3)	0.4554 (2)	0.0701 (9)	
C13	0.8520 (2)	0.4368 (4)	0.5213 (2)	0.0877 (11)	
C14	0.8937 (3)	0.3471 (4)	0.4819 (3)	0.1095 (14)	
C15	0.9840 (3)	0.3085 (6)	0.5412 (4)	0.148 (2)	
C16	0.7723 (2)	0.6785 (3)	0.5429 (2)	0.0736 (9)	
C17	0.8068 (2)	0.7742 (3)	0.5005 (2)	0.0821 (10)	
C18	0.8740 (3)	0.8608 (4)	0.5651 (2)	0.1039 (14)	
C19	0.8973 (4)	0.9751 (5)	0.5287 (3)	0.142 (2)	
C20	0.7782 (2)	0.0872 (2)	0.73747 (19)	0.0591 (7)	
C21	0.8585 (2)	0.0989 (3)	0.7323 (2)	0.0686 (8)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C22	0.8973 (2)	0.2154 (3)	0.7391 (2)	0.0711 (9)	
C23	0.8581 (2)	0.3286 (3)	0.75144 (19)	0.0607 (7)	
C24	0.8940 (2)	0.4517 (3)	0.7557 (2)	0.0662 (8)	
C25	0.8535 (2)	0.5573 (3)	0.7660 (2)	0.0657 (8)	
C26	0.7749 (2)	0.5462 (3)	0.7738 (2)	0.0679 (8)	
C27	0.7390 (2)	0.4290 (3)	0.7700 (2)	0.0694 (8)	
C28	0.7778 (2)	0.3164 (2)	0.75807 (19)	0.0600 (7)	
C29	0.7396 (2)	0.1939 (3)	0.7505 (2)	0.0637 (8)	
H1	0.5117	0.4606	0.4249	0.107*	
H2	0.4349	0.2744	0.3713	0.121*	
Н3	0.5001	0.0806	0.4187	0.134*	
H4	0.6455	0.0700	0.5191	0.138*	
H4O	0.8599	0.7308	0.7740	0.134*	
Н5	0.7246	0.2558	0.5688	0.117*	
H7A	0.7295	0.4774	0.5924	0.094*	
H7B	0.6427	0.5573	0.5532	0.094*	
H8A	0.6026	0.5591	0.3754	0.092*	
H8B	0.6643	0.6697	0.3744	0.092*	
H9A	0.6195	0.7924	0.4617	0.110*	
H9B	0.5529	0.6833	0.4544	0.110*	
H10A	0.4837	0.7156	0.3035	0.138*	0.88
H10B	0.4704	0.8296	0.3544	0.138*	0.88
H10C	0.4579	0.7594	0.3413	0.138*	0.12
H10D	0.5190	0.8753	0.3539	0.138*	0.12
H11A	0.5899	0.8275	0.2843	0.217*	0.88
H11B	0.5871	0.9381	0.3430	0.217*	0.88
H11C	0.5066	0.9151	0.2551	0.217*	0.88
H11D	0.4736	0.6916	0.2320	0.180*	0.12
H11E	0.5535	0.7830	0.2511	0.180*	0.12
H11F	0.4590	0.8400	0.2214	0.180*	0.12
H12A	0.7296	0.4148	0.4277	0.090*	
H12B	0.7775	0.5346	0.4148	0.090*	
H13A	0.8416	0.3936	0.5644	0.112*	
H13B	0.8904	0.5097	0.5475	0.112*	
H14A	0.8585	0.2700	0.4617	0.144*	
H14B	0.8968	0.3876	0.4337	0.144*	
H15A	1.0082	0.2512	0.5147	0.233*	
H15B	0.9832	0.2656	0.5898	0.233*	
H15C	1.0206	0.3832	0.5609	0.233*	
H16A	0.8213	0.6398	0.5893	0.096*	
H16B	0.7382	0.7251	0.5667	0.096*	
H17A	0.8322	0.7307	0.4688	0.104*	
H17B	0.7582	0.8275	0.4611	0.104*	
H18A	0.8514	0.8896	0.6034	0.128*	
H18B	0.9261	0.8096	0.5965	0.128*	
H19A	0.9420	1.0211	0.5738	0.226*	
H19B	0.8478	1.0235	0.4979	0.226*	
H19C	0.9225	0.9420	0.4920	0.226*	
H21	0.8853	0.0268	0.7241	0.087*	

H22	0.9508	0.2212	0.7367	0.091*
H24	0.9464	0.4604	0.7511	0.085*
H26	0.7479	0.6192	0.7816	0.089*
H27	0.6870	0.4229	0.7760	0.089*
H29	0.6873	0.1859	0.7549	0.083*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0846 (6)	0.0493 (4)	0.0677 (5)	-0.0029 (4)	0.0336 (4)	-0.0039 (3)
01	0.0811 (15)	0.0723 (15)	0.0930 (17)	-0.0088 (12)	0.0512 (13)	-0.0066 (12)
02	0.1071 (18)	0.0523 (13)	0.0804 (16)	0.0101 (13)	0.0304 (14)	0.0063 (11)
O3	0.1080 (18)	0.0711 (15)	0.0679 (14)	-0.0156 (13)	0.0438 (13)	-0.0229 (12)
O4	0.0858 (16)	0.0560 (14)	0.1050 (19)	-0.0103 (12)	0.0383 (14)	-0.0062 (13)
N1	0.0717 (16)	0.0652 (17)	0.0576 (15)	-0.0036 (13)	0.0320 (13)	-0.0055 (13)
C1	0.081 (2)	0.090 (2)	0.080(2)	-0.012 (2)	0.038 (2)	-0.003 (2)
C2	0.091 (2)	0.104 (3)	0.087 (2)	-0.029 (2)	0.036 (2)	-0.012 (2)
C3	0.127 (4)	0.093 (3)	0.095 (3)	-0.036 (3)	0.047 (3)	-0.016 (2)
C4	0.135 (4)	0.074 (2)	0.102 (3)	-0.013 (2)	0.037 (3)	0.005 (2)
C5	0.104 (3)	0.079 (2)	0.080(2)	-0.011 (2)	0.029 (2)	0.003 (2)
C6	0.089 (2)	0.071 (2)	0.0592 (19)	-0.013 (2)	0.0332 (18)	-0.0043 (17)
C7	0.084 (2)	0.078 (2)	0.062 (2)	-0.0089 (19)	0.0364 (18)	-0.0029 (17)
C8	0.073 (2)	0.073 (2)	0.0627 (19)	0.0024 (17)	0.0304 (17)	0.0008 (16)
С9	0.086 (2)	0.085 (2)	0.094 (2)	0.009 (2)	0.048 (2)	0.002 (2)
C10	0.097 (3)	0.115 (3)	0.115 (3)	0.029 (2)	0.030 (2)	-0.003 (2)
C11A	0.181 (6)	0.158 (6)	0.108 (4)	0.075 (4)	0.077 (4)	0.051 (4)
C11B	0.106 (16)	0.120 (18)	0.102 (5)	0.004 (16)	0.017 (11)	0.009 (13)
C12	0.079 (2)	0.070 (2)	0.066 (2)	0.0034 (18)	0.0360 (18)	-0.0059 (17)
C13	0.088 (2)	0.094 (2)	0.076 (2)	0.014 (2)	0.032 (2)	-0.001 (2)
C14	0.103 (3)	0.107 (3)	0.105 (3)	0.029 (2)	0.034 (2)	-0.003 (2)
C15	0.106 (3)	0.157 (5)	0.168 (5)	0.037 (3)	0.050 (3)	0.019 (4)
C16	0.081 (2)	0.071 (2)	0.070 (2)	-0.0148 (18)	0.0341 (18)	-0.0136 (18)
C17	0.088 (2)	0.079 (2)	0.084 (2)	-0.016 (2)	0.041 (2)	-0.015 (2)
C18	0.116 (3)	0.102 (3)	0.102 (3)	-0.043 (2)	0.055 (2)	-0.025 (2)
C19	0.157 (4)	0.117 (4)	0.144 (4)	-0.057 (3)	0.060 (3)	-0.012 (3)
C20	0.0646 (18)	0.0539 (18)	0.0538 (16)	0.0011 (14)	0.0217 (14)	-0.0009 (14)
C21	0.071 (2)	0.057 (2)	0.080 (2)	0.0049 (16)	0.0356 (18)	-0.0071 (16)
C22	0.0642 (19)	0.062 (2)	0.084 (2)	0.0008 (16)	0.0307 (18)	-0.0062 (17)
C23	0.0586 (17)	0.0566 (19)	0.0607 (18)	0.0021 (15)	0.0208 (14)	-0.0031 (14)
C24	0.0625 (19)	0.057 (2)	0.073 (2)	-0.0037 (15)	0.0250 (16)	-0.0088 (16)
C25	0.072 (2)	0.0512 (19)	0.0646 (19)	-0.0051 (16)	0.0217 (16)	-0.0048 (15)
C26	0.078 (2)	0.0503 (19)	0.078 (2)	0.0024 (16)	0.0371 (18)	-0.0069 (16)
C27	0.074 (2)	0.0540 (19)	0.085 (2)	0.0023 (16)	0.0389 (18)	-0.0032 (17)
C28	0.0641 (18)	0.0514 (18)	0.0622 (18)	0.0035 (14)	0.0259 (15)	-0.0006 (14)
C29	0.0685 (19)	0.0508 (18)	0.073 (2)	0.0033 (15)	0.0320 (16)	0.0022 (15)
Geometric para	meters (Å, °)					

S1—O1 1.449 (3) C5—H5 0.933

S1—O2	1.465 (2)	С7—Н7А	0.969
S1—O3	1.441 (2)	С7—Н7В	0.972
S1—C20	1.768 (3)	C8—H8A	0.981
O4—C25	1.367 (4)	С8—Н8В	0.961
N1—C7	1.530 (5)	С9—Н9А	0.978
N1—C8	1.517 (3)	С9—Н9В	0.967
N1—C12	1.515 (5)	C10—H10A	0.970
N1—C16	1.513 (4)	C10—H10B	0.970
C1—C2	1.376 (6)	C10—H10C	0.970
C1—C6	1.398 (4)	C10—H10D	0.970
C2—C3	1.361 (7)	C11A—H11A	0.960
C3—C4	1.375 (6)	C11A—H11B	0.960
C4—C5	1.383 (6)	C11A—H11C	0.960
C5—C6	1.377 (5)	C11B—H11D	0.960
C6—C7	1.503 (5)	C11B—H11E	0.960
C8—C9	1.518 (6)	C11B—H11F	0.960
C9—C10	1.519 (5)	C12—H12A	0.966
C10-C11A	1.500 (10)	C12—H12B	0.959
C10-C11B	1.48 (2)	C13—H13A	0.966
C12—C13	1.509 (4)	С13—Н13В	0.975
C13—C14	1.515 (7)	C14—H14A	0.971
C14—C15	1.478 (6)	C14—H14B	0.974
C16—C17	1.513 (6)	C15—H15A	0.957
C17—C18	1.507 (5)	C15—H15B	0.973
C18—C19	1.490 (8)	C15—H15C	0.962
C20—C21	1.410 (5)	C16—H16A	0.960
C20—C29	1.362 (4)	C16—H16B	0.982
C21—C22	1.362 (5)	C17—H17A	0.959
C22—C23	1.419 (5)	С17—Н17В	0.983
C23—C24	1.410 (4)	C18—H18A	0.961
C23—C28	1.423 (5)	C18—H18B	0.969
C24—C25	1.355 (5)	C19—H19A	0.952
C25—C26	1.406 (6)	C19—H19B	0.923
C26—C27	1.354 (4)	С19—Н19С	0.983
C27—C28	1.408 (5)	C21—H21	0.924
C28—C29	1.413 (4)	С22—Н22	0.930
O4—H4O	0.817	C24—H24	0.932
С1—Н1	0.926	C26—H26	0.930
С2—Н2	0.930	С27—Н27	0.936
С3—Н3	0.931	С29—Н29	0.928
С4—Н4	0.931		
O2···O4 ⁱ	2.696 (3)	C11B···H2 ^{iv}	2.896
O4…O2 ⁱⁱ	2.696 (3)	С25…Н7А	2.970
C2···C11B ⁱⁱⁱ	2.99 (3)	H2…O1 ^v	2.993
C11B····C2 ^{iv}	2.99 (3)	H2···O3 ^v	2.947
S1…H4O ⁱ	2.925	H2···C11B ⁱⁱⁱ	2.896
$O1 \cdots H2^{v}$	2.993	H3…O1 ^v	2.817

O1···H3 ^v	2.817	H4…O3	2.757
O1…H8A ^{vi}	2.893	H4O…S1 ⁱⁱ	2.925
O1…H8B ^{vi}	2.665	H4O…O2 ⁱⁱ	1.880
O1…H10B ^{vii}	2.989	H7A…C25	2.970
O1…H12B ^{vi}	2.930	H8A…O1 ^{ix}	2.893
O2···H4O ⁱ	1.880	H8B…O1 ^{ix}	2.665
O2…H12B ^{vi}	2.516	H9B…C1 ^{vii}	2.961
$02 \cdots H17A^{vi}$	2.992	H9B···C2 ^{vii}	2.846
02H26 ⁱ	2,593	H10B····O1 ^{vii}	2,989
02 H20	2 947	H11D $C2^{iv}$	2 949
03···H4	2 757		2.515
	2.737		2.024
O3HI6B	2.550		2.942
O3…H18A ⁴	2.736	H11F····C2 ^{**}	2.895
O4···H15B ^{vin}	2.661	H12B···O1 ^{IX}	2.930
O4…H16A	2.859	H12B···O2 ^{ix}	2.516
O4…H22 ^{viii}	2.777	H15B····O4 ^x	2.661
C1···H9B ^{vii}	2.961	H16A…O4	2.859
C1…H11F ⁱⁱⁱ	2.942	H16B····O3 ⁱⁱ	2.336
C2···H9B ^{vii}	2.846	H17A····O2 ^{ix}	2.992
C2…H11D ⁱⁱⁱ	2.949	H18A····O3 ⁱⁱ	2.736
C2…H11E ⁱⁱⁱ	2.624	H22····O4 ^x	2.777
C2…H11F ⁱⁱⁱ	2.895	H26····O2 ⁱⁱ	2.593
01—S1—O2	111.98 (17)	С9—С10—Н10В	108.9
01—S1—O3	114.40 (15)	C9—C10—H10C	104.0
O1—S1—C20	106.62 (16)	C9—C10—H10D	103.9
O2—S1—O3	112.04 (15)	C11A-C10-H10A	108.9
O2—S1—C20	104.67 (13)	C11A—C10—H10B	108.9
O3—S1—C20	106.32 (17)	C11B—C10—H10C	103.9
C7—N1—C8	111.5 (2)	C11B—C10—H10D	103.9
C7—N1—C12	111.1 (2)	H10A—C10—H10B	107.7
C7—N1—C16	106.3 (2)	H10C—C10—H10D	105.4
C8—N1—C12	106.2 (2)	C10—C11A—H11A	109.5
C8—N1—C16	111.0 (2)	C10—C11A—H11B	109.5
C12—N1—C16	110.7 (2)	C10—C11A—H11C	109.5
C2—C1—C6	120.8 (3)	H11A—C11A—H11B	109.5
C1—C2—C3	120.3 (3)	H11A—C11A—H11C	109.5
C2—C3—C4	120.3 (4)	H11B—C11A—H11C	109.5
C3—C4—C5	119.4 (4)	C10—C11B—H11D	109.5
C4—C5—C6	121.5 (3)	C10—C11B—H11E	109.5
C1—C6—C5	117.6 (3)	C10—C11B—H11F	109.5
C1—C6—C7	122.3 (3)	H11D—C11B—H11E	109.5
C5—C6—C7	119.9 (2)	H11D—C11B—H11F	109.5
N1—C7—C6	117.0 (3)	H11E—C11B—H11F	109.5
N1—C8—C9	115.4 (3)	N1—C12—H12A	108.4

C8—C9—C10	111.4 (3)	N1—C12—H12B	108.4
C9—C10—C11A	113.3 (4)	C13—C12—H12A	107.0
C9—C10—C11B	133.1 (18)	C13—C12—H12B	107.8
N1-C12-C13	116.7 (3)	H12A—C12—H12B	108.5
C12—C13—C14	110.8 (3)	С12—С13—Н13А	108.7
C13—C14—C15	113.0 (4)	С12—С13—Н13В	107.8
N1-C16-C17	115.6 (3)	C14—C13—H13A	111.0
C16—C17—C18	110.5 (3)	C14—C13—H13B	110.5
C17—C18—C19	114.2 (3)	H13A—C13—H13B	107.9
S1—C20—C21	119.8 (2)	C13—C14—H14A	110.2
S1—C20—C29	120.9 (2)	C13—C14—H14B	110.5
C21—C20—C29	119.4 (3)	C15—C14—H14A	108.0
C20—C21—C22	120.9 (3)	C15—C14—H14B	107.4
C21—C22—C23	121.1 (3)	H14A—C14—H14B	107.4
C22—C23—C24	123.1 (3)	C14—C15—H15A	111.0
C22—C23—C28	117.9 (3)	C14—C15—H15B	109.7
C24—C23—C28	119.0 (3)	C14—C15—H15C	109.6
C23—C24—C25	121.0 (3)	H15A—C15—H15B	108.7
O4—C25—C24	118.7 (3)	H15A—C15—H15C	109.6
O4—C25—C26	120.9 (3)	H15B—C15—H15C	108.2
C24—C25—C26	120.4 (3)	N1—C16—H16A	109.0
C25—C26—C27	119.6 (3)	N1—C16—H16B	107.7
C26—C27—C28	122.2 (3)	С17—С16—Н16А	108.8
C23—C28—C27	117.7 (3)	C17—C16—H16B	108.4
C23—C28—C29	119.2 (3)	H16A—C16—H16B	107.2
C27—C28—C29	123.1 (3)	С16—С17—Н17А	110.4
C20—C29—C28	121.5 (3)	С16—С17—Н17В	109.7
С25—О4—Н4О	109.9	С18—С17—Н17А	110.0
C2—C1—H1	119.9	C18—C17—H17B	108.2
C6—C1—H1	119.3	H17A—C17—H17B	107.9
C1—C2—H2	119.7	C17—C18—H18A	108.5
С3—С2—Н2	120.0	C17—C18—H18B	107.1
С2—С3—Н3	119.3	C19—C18—H18A	108.6
С4—С3—Н3	120.4	C19—C18—H18B	109.9
С3—С4—Н4	120.4	H18A—C18—H18B	108.4
C5—C4—H4	120.2	С18—С19—Н19А	107.9
С4—С5—Н5	118.8	C18—C19—H19B	110.3
С6—С5—Н5	119.7	С18—С19—Н19С	106.2
N1—C7—H7A	107.2	H19A—C19—H19B	113.4
N1—C7—H7B	107.0	H19A—C19—H19C	108.2
С6—С7—Н7А	109.2	H19B—C19—H19C	110.6
С6—С7—Н7В	108.9	C20-C21-H21	119.8
H7A—C7—H7B	107.2	C22—C21—H21	119.3
N1—C8—H8A	107.8	C21—C22—H22	119.8
N1—C8—H8B	108.6	C23—C22—H22	119.1
С9—С8—Н8А	107.9	C23—C24—H24	119.5
С9—С8—Н8В	109.4	C25—C24—H24	119.5
H8A—C8—H8B	107.4	C25—C26—H26	119.8
С8—С9—Н9А	107.8	С27—С26—Н26	120.6

С8—С9—Н9В	109.2	С26—С27—Н27	118.8
С10—С9—Н9А	110.3	C28—C27—H27	119.0
С10—С9—Н9В	110.4	С20—С29—Н29	119.3
Н9А—С9—Н9В	107.5	С28—С29—Н29	119.2
С9—С10—Н10А	108.9		
O1—S1—C20—C21	178.7 (2)	C8—C9—C10—C11A	-70.7 (5)
O1—S1—C20—C29	-1.7 (2)	C8—C9—C10—C11B	-6(2)
O2—S1—C20—C21	59.9 (3)	N1-C12-C13-C14	177.0 (3)
O2—S1—C20—C29	-120.5 (2)	C12-C13-C14-C15	171.9 (4)
O3—S1—C20—C21	-58.9 (2)	N1-C16-C17-C18	-171.6 (3)
O3—S1—C20—C29	120.8 (2)	C16—C17—C18—C19	-167.4 (4)
C7—N1—C8—C9	61.7 (3)	S1-C20-C21-C22	178.9 (2)
C8—N1—C7—C6	65.9 (3)	S1—C20—C29—C28	-178.9 (2)
C7—N1—C12—C13	-68.0 (3)	C21—C20—C29—C28	0.7 (4)
C12—N1—C7—C6	-52.5 (3)	C29—C20—C21—C22	-0.8 (4)
C7—N1—C16—C17	-173.9 (3)	C20—C21—C22—C23	-0.2 (4)
C16—N1—C7—C6	-173.0 (2)	C21—C22—C23—C24	-177.5 (3)
C8—N1—C12—C13	170.5 (3)	C21—C22—C23—C28	1.3 (4)
C12—N1—C8—C9	-177.1 (3)	C22—C23—C24—C25	178.8 (3)
C8—N1—C16—C17	-52.4 (4)	C22—C23—C28—C27	-179.8 (2)
C16—N1—C8—C9	-56.6 (4)	C22—C23—C28—C29	-1.3 (4)
C12-N1-C16-C17	65.3 (3)	C24—C23—C28—C27	-1.1 (4)
C16—N1—C12—C13	49.8 (4)	C24—C23—C28—C29	177.5 (2)
C2—C1—C6—C5	-2.0 (7)	C28—C23—C24—C25	0.1 (3)
C2—C1—C6—C7	-177.1 (4)	C23—C24—C25—O4	-178.4 (2)
C6—C1—C2—C3	2.3 (8)	C23—C24—C25—C26	0.8 (4)
C1—C2—C3—C4	-0.7 (9)	O4—C25—C26—C27	178.5 (3)
C2—C3—C4—C5	-1.0 (9)	C24—C25—C26—C27	-0.8 (4)
C3—C4—C5—C6	1.2 (9)	C25—C26—C27—C28	-0.2 (4)
C4—C5—C6—C1	0.3 (7)	C26—C27—C28—C23	1.1 (4)
C4—C5—C6—C7	175.5 (5)	C26—C27—C28—C29	-177.4 (3)
C1—C6—C7—N1	-79.8 (5)	C23—C28—C29—C20	0.3 (4)
C5—C6—C7—N1	105.2 (4)	C27—C28—C29—C20	178.8 (3)
N1-C8-C9-C10	175.5 (3)		

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) *x*, *y*+1, *z*; (iii) -*x*+1, *y*-1/2, -*z*+1/2; (iv) -*x*+1, *y*+1/2, -*z*+1/2; (v) -*x*+1, -*y*, -*z*+1; (vi) *x*, -*y*+1/2, *z*+1/2; (vii) -*x*+1, -*y*+1, -*z*+1; (viii) -*x*+2, *y*+1/2, -*z*+3/2; (ix) *x*, -*y*+1/2, *z*+1/2; (*x*) -*x*+2, *y*-1/2, -*z*+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A		
O4—H4O···O2 ⁱⁱ	0.82	1.88	2.696 (3)	177		
C12—H12B····O2 ^{ix}	0.96	2.52	3.470 (4)	173		
C16—H16B···O3 ⁱⁱ	0.98	2.34	3.251 (4)	155		
Symmetry codes: (ii) $x, y+1, z$; (ix) $x, -y+1/2, z-1/2$.						

Fig. 2